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Issues with SGD

DNNs are trained via SGD: wt+1 = wt − η · ∇wJ(w)

Loss is a high dimensional function

May have local minima
May have saddle points
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Issues with SGD

DNNs are trained via SGD: wt+1 = wt − η · ∇wJ(w)
Loss is a high dimensional function

May vary swiftly in one direction and slowly in the other
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Issues with SGD

SGD leads to jitter along the deep dimension and slow progress along
the shallow one

Figure credits: Sebastian Ruder
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SGD+Momentum

SGD

wt+1 = wt − η · ∇wJ(w)

SGD+Momentum

v0 = 0
vt+1 = ρ · vt +∇wJ(w)
wt+1 = wt − η · vt+1

Aggregates velocity: exponential moving average over gradients
ρ is the friction (typically set to 0.9 or 0.99)

I Sutskever et al., ICML 2013
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SGD+Momentum

SGD

wt+1 = wt − η · ∇wJ(w)

for i in range(num_iters):
→dw = grad(J,W, x, y)
→ w− = η · dw

SGD+Momentum

v0 = 0
vt+1 = ρ · vt +∇wJ(w)
wt+1 = wt − η · vt+1

v0 = 0
for i in range(num_iters):
→dw = grad(J,W, x, y)
→ v = ρ · v + dw
→ w− = η · v

I Sutskever et al., ICML 2013
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SGD+Momentum

1 How can momentum help?

Optimization proceeds even
at the local minimum or
saddle point (because of the
accumulated velocity)
Jitter is reduced in ravine
like loss surfaces
Updates are more smoothed
out (less noisy because of
the exponential averaging)

I Sutskever et al., ICML 2013
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Nesterov Momentum

1 Look ahead with the velocity, then take a step in the gradient’s
direction

I Sutskever et al., ICML 2013
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Nesterov Momentum

v0 = 0
for i in range(num_iters):
→dw = grad(J,W + ρ · v, x, y)
→ v = ρ · v + dw
→ w− = η · v

NAG allows to change velocity in a faster and more responsive way
(particularly for large values of ρ)

I Sutskever et al., ICML 2013
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Ada Grad

1 Goal: Adaptive (or, per-parameter) learning rates are introduced

2 Parameter-wise scaling of the learning rate by the aggregated gradient

Duchi et al. 2011, JMLR
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Ada Grad

grad_sq = 0
for i in range(max_iters):
→ dw = grad(J,w,x,y)
→grad_sq += dw � dw
→ w− = η · dw/(sqrt(grad_sq) + ε)

Optimization progress
along the steep
directions is attenuated
Along the flat directions
is accelerated

Duchi et al. 2011, JMLR
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RMS Prop

1 If Ada Grad is run for too long
the gradients accumulate to a big value
→ update becomes too small (or, learning rate is reduced continuously)

2 RMS prop (a leaky version of Ada Grad) addresses this using a
friction coefficient (ρ)
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RMS Prop

grad_sq = 0
for i in range(max_iters):
→ dw = grad(J,w,x,y)
→grad_sq = ρ· grad_sq + (1− ρ)· dw � dw
→ w− = η · dw/(sqrt(grad_sq) + ε)
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Adam

1 Inculcates both the good things: momentum and the adaptive
learning rates
Adam = RMSProp + Momentum

2 m1 = 0
m2 = 0
for i in range(max_iters):
→ dw = grad(J,w,x,y)
→ m1 = β1 ·m1 + (1− β1) · dw
→ m2 = β2 ·m2 + (1− β2) · dw2

→ w− = η ·m1/(sqrt(m2) + ε)
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Adam

1 m1 = 0
m2 = 0
for i in range(max_iters):
→ dw = grad(J,w,x,y)
→ m1 = β1 ·m1 + (1− β1) · dw
→ m2 = β2 ·m2 + (1− β2) · dw2

→ w− = η ·m1/(sqrt(m2) + ε)

2 Bias correction is performed (since the estimates start from 0)
3 Adam works well in practice (mostly with a fixed set of values for the

hyper-params)
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Learning rate (lr)

What lr to use?

Different lr at different
stages of the training!
Start with high lr and
reduce it with time

Figure credits: CS231n-Standford
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Learning Rate decay: Step

1 Reduce the lr after
regular intervals

2 E.g. after every 30
epochs, η∗ = 0.1 · η

Figure credits: Katherine Li
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Learning Rate decay: Step

1 Characteristic loss
curve: different phases
for ‘’stage’

2 Issues: annoying
hyper-params (when to
reduce, by how much,
etc.)

Figure credits: Kaiming He et al. 2015, ResNets
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Learning Rate decay: Cosine

1 Reduces the lr
continuously
ηt = 1

2η0(1+cos(tπ/T ))

2 Less number of
hyper-parameters

Figure credits: Sebastian Correa and Medium.com
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Learning Rate decay: Cosine

1 Training longer tends to
work, but initial lr is
still a tricky one

Figure credits: Dr Justin Johnson, U Michigan
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Learning Rate decay: Linear

1 ηt = η0(1− t/T )

Figure credits: peltarion.com
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Learning Rate decay: Exponential

1 ηt = η0 · (1− α/100)t

Figure credits: peltarion.com
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Learning Rate decay: Constant lr

1 No change in the learning rate
ηt = η0

2 Works for prototyping of ideas (other schedules may be better for
squeezing in those 1-2% of gains in the performance)
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Early stopping

1 Train as long as the
validation performance
improves (Stop when it
deteriorates)

2 Practice: train for a
long number of epochs,
saving the intermediate
snapshots regularly, pick
the one with the best
val performance!
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Good training practices

Observe the initial loss value (if it is as expected or presence of bugs!)

One may try to overfit to a very small subset to ensure the basic
things are in place
Monitor the learning curves (tell us if poor initialization or
over/under/right-fitting)
Use frameworks’ (or fora) help for observing the learning dynamics
(e.g. Tensorboard)
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Model Ensembles

Train multiple models independently and take average inference
during testing

Generally results in slight performance improvements
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Model Ensembles

The experts can be different snapshots of the same model from
training

E.g. trained with a periodic lr scheduling
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Model Ensembles

Moving average of parameters for testing (Polyak Averaging)
for i in range(max_iters):
→ dw = grad(J,w,x,y)
→ w+ = −η · dw
→ wtest = 0.95 · wtest + 0.05 · w
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Transfer learning: Pretrained features

Sometimes, we may get away with lesser training data!

Take a DNN trained on a huge training data (task), use it as a
feature extractor!!
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Transfer learning: Pretrained features
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Transfer learning: Pretrained features and
Finetuning

Some tips: may have to use smaller learning rate for the transferred layers,
start with feature extraction then do finetuning, lower layers might be
frozen, etc.

Figure credits: Giang Tran and Medium.com
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